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Abstract 

Comparisons between structures with similar atomic 
skeletons are made by mathematically deforming one 
over the other using inhomogeneous transformations. 
Removal of shallow bending and twisting distortions 
between the structures reveals local differences that 
are masked by comparisons using homogeneous 
transformations. Inhomogenous deformations are 
restrained to prevent unrealistic changes in local 
atomic bonding geometry by the addition of penalty 
functions similar in form to the potentials used in 
empirical molecular mechanics calculations. 

I. Introduction 

On many occasions chemists dealing with atomic 
structures need to measure the similarity for arrange- 
ments of corresponding atoms between two struc- 
tures. For instance, a common requirement of crystal- 
lographers is to determine the similarity between two 
or more molecules that may pack within the asym- 
metric unit; also, they may wish to decide whether 
there exists any pseudo spatial symmetry between 
such molecules. Often comparisons of experimental 
structures to ones predicted by theoretical models are 
used to detect anomalies that may exist in either one. 
For molecular mechanics calculations, especially 
those of macromolecules, one is never guaranteed to 
find the same equilibrium structure. If several subtly 
different structures are generated then methods to 
compare and contrast them are essential. 

The most common way to make a comparison 
between two structures is to superimpose them such 
that the sum of the squared distances between corre- 
sponding atoms is a minimum. This method maintains 

rigid structural skeletons. The use of the root mean 
square (r.m.s.) deviation of distance between these 
atoms as the measure of similarity between structures 
is ubiquitous since it is easy to appreciate. Slightly 
more sophisticated comparisons also measure relative 
amounts of compression or expansion between struc- 
tures. These types of comparisons, termed orthogonal 
and homogeneous transformations respectively, often 
make similar conformations look radically different 
or conceal local differences between structures. Fig. 
1 shows this in a schematic manner. Comparison 
method A merely superimposes without structural 
distortion, and the deviations in the region of the 
glitch are of the same magnitude as other regions; in 
atomic structures such localized differences between 
the arrangement of atoms are not easily seen. 

Inhomogeneous transformations allow various 
types of bending and twisting distortions to occur. 
Low-order inhomogeneous transformations are 
defined as ones that give moderately shallow defor- 
mations that apply uniformly over the entire structure. 
The use of these is not in vogue since the prospect 
of performing and interpreting the resulting structural 
distortions is forbidding. But more significantly the 
number of degrees of freedom, even for low-order 
deformations, increases rapidly (a 60-parameter fit 

Fig. 1. Schematic illustration showing the effects of orthogonal 
(A) and inhomogeneous (B) comparison transformations. 
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for a cubic as compared with a 6-parameter fit for an 
orthogonal transformation) and therefore restricts its 
use to large molecules where there are plenty of atoms 
to characterize the transformation sufficiently. 

The aim of this paper is fourfold: (i) To show how 
inhomogeneous transformations can be utilized to 
remove low-order distortions that may conceal the 
salient differences between structures. Comparison 
method B in Fig. 1 removes the low-order curvature 
differences between the structures and the subsequent 
superposition clearly identifies the glitcl~ as the only 
region of major difference. (ii) To show how 
inhomogeneous transformations may be restrained to 
prevent unrealistic distortions since there is little 
benefit in comparison transformations that force fit 
global features of structures at the expense of generat- 
ing unreasonable localized distortions. (iii) To pres- 
ent techniques that extend the use of inhomogeneous 
transformations to smaller structures since com- 
parison transformations that impose a precise overlap 
of corresponding atoms by wild variation in under- 
determined deformation parameters will be of little 
use. (iv) Finally, more as a corollary, to suggest how 
inhomogeneous distortions can be constructed and 
used as templates to anneal or purposely bend and 
twist structures. 

In the next few subsections we describe the features 
of the various types of transformations. § 2 shows 
how to implement a general inhomogeneous transfor- 
mation including geometric restraints. Finally, a 
demonstration of the comparison techniques is given 
in §3. 

1.1. Orthogonal transforms 

Orthogonal transformations require the determina- 
tion of a translation vector C and a matrix R which 
describes the rotation which superimposes the struc- 
tures into optimal least-squares a tom-atom register. 
By definition the configuration of the atomic skeleton 
remains precisely the same before and after the 
orthogonal transformation. The transformation is 
written as 

z L = C + R x L  (1) 

and the function minimized is the sum of the distances 
squared, 

e = • ( z L - C -  Rxr)  2 (2) 
L 

where zL are the reference structural coordinates, xL 
are the object structural coordinates which are being 
transformed and subscript L refers to a particular 
atom. The determination of C is trivial for orthogonal 
and homogeneous transformations (§ 1.2) since the 
vector that superimposes the centroids is optimal (the 
centroid is the first moment of the structural coordin- 
ates). C can be removed by simply shifting the struc- 

tures so that their respective centroids are at the 
origin. Finding R, the elements of which are not 
linearly independent,  invariably involves some itera- 
tive optimization procedure using various formula- 
tions of the rotation matrix (Diamond, 1966; Cox, 
1967; Rao & Rossman, 1973; Nyburg, 1974; Ken- 
knight, 1984; Mackay, 1984; Lesk, 1986) or analytic 
approaches (Kabsch, 1976, 1978; McLachlan, 1972, 
1979; Kearsley, 1989). 

1.2. Linear transforms 

A few investigators (Mackay, 1977; Watkin, 1980) 
have used a slightly more comprehensive transforma- 
tion which describes homogeneous deformations of 
a structure. 

zt. = C + DxL. (3) 

D is a 3 x 3 matrix that describes the variation of 
displacement of general positions z with respect to 
corresponding positions x; (3) serves to map specific 
points (atoms) xL onto zL. The nine matrix elements 
are allowed to vary independently and can be derived 
using the linear least-squares method with a residual 
function of form similar to (2). 

Matrix D can be factorized into an orthogonal 
matrix R which describes rotation and T which is a 
symmetric homogeneous dilation matrix accom- 
modating six of the nine independent parameters. 
The tilde indicates the transpose of matrix D. 

D = R T  (4) 

T=(ff)D) ~/2 R= D(DD) -~/2. (5) 

R is not the optimal rotation matrix for an orthogonal 
transformation since it was derived in conjunction 
with the six degrees of freedom afforded by dilation. 
However, it presents a good starting matrix for finding 
the optimal orthogonal transformation if iterative 
procedures are used. 

If T is diagonalized, the eigenvectors show the 
principal directions of strain and the eigenvalues give 
the relative degrees of dilation. The determinant of 
R ought to have a value of +1 for a proper rotation. 
If this is not so, it means that the transformation 
inverted the structure with concomitant changes in 
chirality. This factorization of D is also applicable 
to higher-order transformations and serves to inform 
us of possible structural inversions. 

1.3. Higher-order transforms 

Inhomogeneous transformations allow for vari- 
ations of R, which represent curvature differences 
between the structures (these are seen as bending and 
twisting distortions), and variation of T, which reflect 
changes in strain throughout the structure. Con- 
tinuum mechanics expresses such bending and twist- 
ing distortions as derivatives of D with respect to the 



630 RESTRAINED I N H O M O G E N E O U S  TRANSFORMATIONS 

object structural coordinates. The first and second obtain 
derivatives of D define the quadratic and cubic 
deformation tensors. ZLk 

Dki = OZk/ OX i Ek U = O Dki/  OX j = O2 Zk /  OXj OX i 
Linear tensor Quadratic tensor 

Fkq 1 = 02 D k i /  OXi OXj -= 03 Zk /  OXl OXj OX i. 

C u b i c  t enso r  
(6) 

Diamond's  (1976) definitive treatment of the quad- 
ratic transformation rigorously analyzed the Ekij 
tensor and interpreted the variation of rotation in 
terms of curvatures along and about the principal 
directions of strain and identified curvature-free 
deformations describing the variations of T through 
the structure. Transformation orders higher than 
quadratic are less open to this sort of interpretation; 
however, it will be seen that they are necessary for 
certain types of common distortions. In this article 
the highest transformation considered will be cubic, 
although extension to quartic or even higher orders 
presents little complication. 

2. Methods 

2.1. Least-squares formula t ion  

A generalized inhomogeneous transformation can 
be written in the form of a Taylor series expansion 
about the origin of coordinates where subscript k 
refers to the Cartesian components of the ZL coordin- 
ate set and subscripts i, j, l refer to Cartesian com- 
ponents of the XL coordinate set and L is the particular 
atom. 

ZLk C k d- DkiXt.i l l = + ~Ek i jX t iXL j  + g FkqlXLiXLjXLl -~" . . . .  

(7) 

The centroids of each structure should be moved to 
the origin for the best conditioning of the least- 
squares method for this problem (Diamond, 1976). 
The Taylor series will therefore be an expansion about 
the centroids of the structures. Extending the series 
to quadratic and cubic derivative terms is analogous 
to fitting higher polynomial terms in a one- 
dimensional curve fit. The matrices C, D, E and F 
are three-dimensional Cartesian tensors of rank 1, 2, 
3 and 4 with 3, 9, 18 and 30 independent elements 
respectively. Symmetry in the derivative tensors E 
and F reduces the number of independent elements 
from 27 to 18 and 81 to 30 respectively. 

For discrete distrihutions of atoms, the derivatives 
in (6) are approximated by finite differences and are 
best determined by a linear least-squares fit to all the 
available relatable position vectors. Expanding (7) 
and collecting like terms for the tensors E and F we 

= Ck + Dkl (XLl )+ Dk2(XL2)+ Dk3(XL3) 

I (~XLI )  "-~ 31- +Ekl 12 1 2  1 2  Ek22(~XL2) Ek33(~Xt.3) 

-t- EkI2(XLIXL2 ) -t- EkI3(XLIXL3 ) 

. .}_Ek23(XL2XL3)q_Fkll  i (~XLI)13 

I 3 I 3 + Fk222(~x L2) + Fk333(~x L3) 

12(~XLIXL2)+Fkl ~ 2 + Fkl I 2 13(~XL1XL3 ) 
1 2 1 2 

+ Fk22,(-~XL2XL,)+ Fk223(~XL2XL3) 
! 2 1 2 

+ Fk331(~XL3XLi)-}- Fk332(~XL3XL2) 

+ Fk123(XLIXL2XL3 ) . ( 8 )  

This can be written compactly as 

ZLk = ~, Aku~L. (9) 
kt 

where the unknown tensor elements A k .  are linearly 
independent and the constant coefficients ~:L,---- 
~:~(XL) are functions of the object coordinates; again 
subscript k refers to the Cartesian components of the 
ZL coordinate set. For quadratic transforms subscript 
/x takes values from 1 to 10 and, for cubic transforms, 
values from 1 to 20. The function minimized is the 
sum of the squared distances between corresponding 
atoms, 

e = ~ ZLk -- ~ A k . ' & .  ( 1 O) 
k t~ 

The least-squares matrix of second derivatives of 
e (Hessian) can be arranged as a block diagonal 
matrix if the k components of the zt  coordinate set 
are separated. These sub-blocks are identical as 
shown by (11), where 6,,, is the Kronecker d~ita 
function: 

02e/c3Ar~¢,aA.~ =2&..  ~ ~:L,~:L,. (11) 
L 

Thus the solution for Ak~ c a n  be carried out using 
separate applications of the least-squares method for 
each Cartesian index k [of course only one matrix 
inversion of the sub-block matrix in (11) is required]. 
A consequence of this is that the superposition of 
atoms is accomplished by independently matching 
the projections of the atoms on each Cartesian axis. 
If the distribution of atoms in space is not uniform 
(most molecules are anisotropic in shape so this will 
be the case) then the merit of the fit will be different 
for each axial projection. The absence of correlation 
between the superposition of these axial projections 
can lead to severe or unreasonable distortion of the 
transformed structure. 

2.2. Geometr ic  restraints 

To prevent unrealistic distortions to the hybridiz- 
ation geometry of the atoms, correlations between the 
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Cartesian axial projections are introduced by impos- 
ing geometric restraints on the object structure. The 
bond lengths and bond angles are restrained to be 
within a certain tolerance before and after the trans- 
formation. This can be accomplished by adding 
penalty functions Lu and LuK to the residual in (10). 
Lu is the bond penalty term between atoms I and J 
where du is the distance before and d* the distance 
after transformation 

Lu  = A K u ( d * r - d u )  2 (12) 

du = [ (x, - x j ) (x ,  - xj) ],/2 

d*j = {~  k [Dk,(Xn ' - xji) + ~Eku(X.Xo -- xj, xjj) 

) 1/2 
-F 1Fkijl ( xliXljX n - -  X j i X j j X j l  ) ]2 

where the coefficients of the tensor elements gin, = 
s%,-~:J~, are now functions of xt and xj. Similarly 
for LuK, OuK is the angle between atoms I, J and K 
before and O* the angle after transformation. 

LuK = AKuK(0*jK - 0uK )2 (14) 

_, 
= c o s  k 

, 1 

The constants K~j and K u r  are used as relative 
weighting factors between the restraints. The forms 
of the penalty functions are similar to common 
empirical formulations of the steric energy for bonds 
and bond angles (Weiner, Kollman, Nguyen & Case, 
1986). This means that molecular mechanics force 
constants can be used to scale each restraint and also 
allow the penalty functions to be interpreted in terms 
of steric energy. This is done by setting dr~ and 0,jK 
to their appropriate equilibrium values (depending 
upon the molecular mechanics force field used) rather 
than taking on the value before the transformation. 
The constant A is used to scale the penalty terms, be 
they in terms of displacement or steric energy, to the 
residual function of the tensor elements. 

The tensor elements Ak ,  now have to be solved for 
by iterative means; starting with the unrestrained 
solution any full-matrix quadratic optimizer can be 
used (for instance a Newton-Raphson that has been 
modified to ensure global convergence). The first and 

second derivatives of LIj and L u r  with respect to 
Ak~, a r e  given in the Appendix; these are incorporated 
into the gradient and Hessian [(11)] of the least- 
squares function, thus providing correlation between 
Cartesian projections. 

Some molecular structures are easily changed into 
other conformations and in these cases severely 
weighted penalty terms can easily overperturb the 
system. So h should be adjusted carefully to obtain 
an acceptable difference between original and trans- 
formed bond lengths and bond angles or change in 
steric energy for distortion of the atomic hybridiz- 
ation. 

2.3. Structural extensions 

When implementing the above equations, a few 
practical problems arise. As with fitting higher- and 
higher-order polynomials to a data curve, one has to 
know when to stop adding terms. The variances of 
the fitted parameters are given by the diagonal ele- 
ments of the inverse least-squares matrix or Hessian; 
these should be monitored to determine the merit of 
the fit. One way to reduce the estimated error in 
parameters is to increase the data-to-parameter ratio. 
For a cubic transformation at least 20 atoms are 
needed to determine all the tensor elements; this will 
restrict its use to very large structures. However, by 
supplying extra position vectors the data-to-par- 
ameter ratio is increased. This is most easily done by 
constructing corresponding fractional positions along 
selected or all bond vectors. 

x ' = x j + [ L / ( N + l ) ] ( x i - x j )  f o r L = l t o N .  (16) 

Admittedly this simple data extension will expecially 
bias the fit for structures that are relatively planar. 
To circumvent this, atoms involved in ~ bonding have 
additional points positioned above and below the 
plane that are perpendicular to the presumed 
trigonally connected atoms. The new position vectors 
are constructed as follows: 

X'=xI  + PI[(X.I--XM) 

^ ^ ( x K - - x M ) I ,  (17) 

where atoms J, K and M are attached to atom I with 
sp 2 hybridization. The scaling parameter PI serves to 
adjust the length of the attached vector. Other more 
complicated methods can be envisaged, for instance 
matching points on the van der Waals surfaces of 
each structure. 

2.4. Robust analysis 

The least-squares criterion for an optimal fit is very 
sensitive to outlying points. If there are a few atoms 
that are obviously not going to superimpose they can 
be removed from the analysis, or a more robust analy- 
sis can be performed. Robust means that the fitted 
parameters will be less sensitive to outlying data 
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Table 1. Orthogonal (O), linear (L), quadratic ( Q) and cubic ( C) transformation fitting parameters for 
deforming the ketone over the lactone 

The starred t ransformat ions  deform the lactone over  the ketone.  The  r.m.s, deviat ions are measured  in ~ngstr6ms and degrees. Ratio 
refers to the da ta - to -parameter  ratio. N is the number  o f  extra points between bonds ,  and /)1 is the distance in ~ngstr6ms of  the extra 
points above and  below the plane for  the w-bonded atoms. As and AA are the scaling factors for  the bond- length  and bond-angle  
penal ty terms; if a value was not  specified then restraints were not included.  

R . m . s .  

a t o m - a t o m  Ratio 
distance ( N, PI ) 

O1 0.660 11.50 
O2 0.505 11.50 
O3 0.548 11.50 
O4 0-824 11.50 

L1 0.314 5-75 
L2 0"355 5"75 
L3 0.459 5"75 
L4 0-438 10"25 (0, 1"0) 

QI 0"119 2"30 
Q2 O. 125 9.50 (3) 
Q3 0.139 9.50(3) 
Q4 o-165 11-30 (3,1.0) 
Q5 0.177 9-50(3) 
Q6 0.260 9.50 (3) 
Q7 0-131 110.30(45) 
Q8 0-284 11.30(3,1-5) 

Cl 0.010 1.15 
C2 0-024 10.75 (8) 
C3 0-043 10.75 (8) 
C4 0.093 11.65 (8, 1.5) 
C5 0-088 10-75 (8) 
C6 0.143 10.75 (8) 
C7 0.027 55.15 (45) 
C8 0-179 11.65 (8, 1.5) 

LI* 0"474 7.67 
Q2* 0.155 9-50(3) 
Q4* 0.179 11.30 (3, 1.0) 
Q5* 0.181 9.50(3) 
c2"  0.068 10.75 (8) 
c4"  0.115 11.65 (8, 1.5) 
c5"  0.108 10.75 (8) 

R.m.s. R.m.s. 
bond  difference angle difference 

(As) (AA) Remarks 

From L1 
Optimal 
Robust 
Inverted 

0.1918 21.32 
0- 2281 20.92 Robust 
0.0311 (10) 1.52 Restrained 
0.0663 3.59 

0.0839 4.72 
0.0825 5.25 
0.0664 3.73 Robust 
0.0818 4-44 
0"0254 (10) l "47 (10) Restrained 
0.0118 (100) 0.76 (100) Restrained 
0.0838 5.73 
0.0137 (100) 0.79 (100) Restrained 

0.0885 2.73 
0.0855 2.53 
0.0749 2-91 Robust 
0-0929 3-80 
0.0185 (10) 1.03 (10) Restrained 
0.0058 (100) 0.55 (100) Restrained 
0.0861 2.54 
0.0129 (100) 0.70 (100) Restrained 

0.0740 6.95 
0.0923 2.79 Inverted 
0.0507 2.65 
0.0291 (10) 1.09 (10) Inverted 
0-0801 2.60 Inverted 
0.0613 2.92 
0.0172 (10) 0.90 (10) Inverted 

points (atoms). One method is to minimize the 
absolute deviation 

/.L 

Each Cartesian projection k is minimized separately. 
The optimization is most easily accomplished using 
a simplex algorithm (Shavers, Parsons & Deming, 
1979) which has no difficulties with discontinuities 
in the residual error surface. The simplex is con- 
veniently initiated from the least-squares solution by 
randomly perturbing the value of the tensor elements 
by some fraction of their variances. 

3. Discussion 

The various transformations are demonstrated using 
two structures with similar atomic skeletons; a five- 
membered ring lactone and a cyclopentanone both 
with an adjoining benzylidene group (Kearsley & 
Desiraju, 1985). The comparison parameters are 
shown in Table 1 and the orthogonal transformation 
02 depicted in Fig. 2 shows the original conformation 

of each molecule. On the ketone, the hydrogen atoms 
on the carbon that correspond to the lactone oxygen 
have been removed for the comparison. The confor- 
mation of the lactone is almost planar; only the 

O2 L1 

,i 

L3 
"-t 

02 
/ s ~ 

LI L3 

Fig. 2. Stereo drawing of  the superposi t ion compar i son  of  the 
opt imal  or thogonal  ( 0 2 ) ,  l inear (L1) and geometr ical ly  
restrained l inear (L3) t ransformat ions .  The planar  lactone is 
drawn with dashed lines. The  ketone,  which undergoes  the 
t ransformat ions ,  is drawn with solid lines. 
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methylene hydrogens are substantially offset from the 
least-squares plane. In comparison, the cyclopen- 
tanone is puckered and the five- and six-membered 
rings are not in the same plane. The lactone is treated 
as the reference structure and the ketone undergoes 
the transformations in an attempt to remove the twists 
about the connecting bonds between the rings. All 
the individual weighting factors, Ku and KuK,  are 
set to unity. 

The optimal orthogonal transformation 0 2  clearly 
shows that the structures are different (see Fig. 2). 
Note that the rotation matrix factorized from the 
homogeneous distortion tensor gives an inferior 
superposition; compare O1 and 0 2  in Table 1. 
Orthogonal transformation 0 4  compares the ketone 
to the crystallographically inverted lactone. The 
match is far worse since corresponding methylene 
hydrogens are now on opposite sides of the five- 
membered ring. All the other transformations correct 
for this by inverting the ketone with an improper 
rotation. 

The r.m.s, deviation of distance for the linear trans- 
formation L1 shows a marked improvement over the 
orthogonal transformations. However, this is decep- 
tive since scrutiny of Fig. 2 will show that most of 
the atoms have been crushed down onto the best 
plane of the lactone; the smallest eigenvalue of T is 
indicative of this (0-3295, 0.9737, 1.0476). The 
geometry of the cyclopentanone group is therefore 
severely distorted. L3 in Fig. 2 shows how the bond- 
length restraints re-establish the near-original ketone 
conformation. It is interesting to note that the abrupt 
drop in the r.m.s, difference in angle between L2 and 
L3 is due purely to the  bond restraints. Also, as the 
bond penalty terms for the linear transformation 
become overriding (AB tends to infinity) the limiting 
r.m.s, deviation of distance is that of the orthogonal 
transformation 02.  In comparison, restricting the 
bond angles to their precise values gives a limiting 
r.m.s, deviation of distance of 0.502 A. 

Q2 in Fig. 3 shows that the quadratic transforma- 
tion removes the torsional twists between the rings 
but cannot avoid deforming the hydrogens from the 
plane of the benzene ring. Even after the application 
of geometric restraints (Q6), which re-establishes the 
correct puckering of the cyclopentanone ring, the 
benzene ring remains distorted. Also, the torsions 
reappear between the rings. 

The cubic transform (C2) almost precisely super- 
imposes the molecules. Geometric restraints (C6, Fig. 
3) seem to push the wrong carbon out of plane (the 
carbon corresponding to the lactone oxygen). This is 
explicable since it is preferable to fit three atoms of 
the adjacent methylene group rather than a single 
carbon; the geometric restrictions can be satisfied 
either way (alternative weighting schemes or the addi- 
tion of restraints that enforce planarity would remedy 
this problem). Nevertheless the cubic transformation 

suggests that the difference between the structures is 
localized at the puckering of the cyclopentanone ring 
and all other distortions uniformly embrace the whole 
structure. 

Examination of Table 1 shows that the r.m.s, devi- 
ation of distance increases slightly as the number of 
points between bonds [ N in (16)] increases. The value 
of N was set when the data-to-parameter ratio 
reached 10 or the variances of the tensor elements 
stabilized. There are nine sp 2 carbons in common 
between the structures and therefore 18 additional 
position vectors could be constructed according to 
(17). This substantially decreased the variances of the 
tensor elements and prevented the tendency of the 
ketone to contract along the largest inertial axis. 

The robust fits ignored matching the methylene 
hydrogen in favour of a better fit to the carbon 
skeleton. They were far inferior to the restrained fits. 
Robust analyses would fare better when there are no 
pathological dilations and only a few of the atoms 
are severely outlying. 

Alternatively, the lactone can be deformed over the 
ketone structure. This will not in general give the 
same comparison; only the optimal orthogonal 
transformation gives the same superposition. Linear 
transformations give a far worse r.m.s, deviation of 
distance (compare L1 and LI* in Table 1), because 
although the linear transform can suppress curvature 
and out-of-plane deviations in the ketone it cannot 
introduce the required twists in the lactone. Also, in 
this example, the quadratic and cubic transformations 
on the lactone are problematical since it appears that 
the structure is inverted according to the factorization 
of the D tensor. For Q2* the eigenvalues of T are 
(0.6973, 1.0071, 1.7082). These immense homo- 
geneous dilations are compensated for by inhomo- 
geneous distortions which wrench the hydrogens back 
onto the correct side of the five-membered ring. Appli- 
cation of geometric restraints could not remove the 

Q2 Q6 cz c6 Q2 Q6 C2 C6 

. ~  

Fig. 3. Stereo drawing of the superposition comparison of quad- 
ratic transformation, free and restrained (Q2 and" Q6), and cubic 
transformation, free and restrained (C2 and C6). The planar 
lactone is drawn with dashed lines. The ketone, which undergoes 
the transformations, is drawn with solid lines. 
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improper rotation or decrease the variance in the 
tensor parameters which were very large. The awk- 
wardness of these inhomogeneous transformations 
vanishes if extra position vectors are constructed 
above and below the plane of the 7r-bonded atoms 
according to (17). For instance, for Q4* the variances 
of the tensor parameters are an order of magnitude 
smaller and the eigenvalues of T indicate only minor 
amounts of homogeneous dilation (0.9601, 0.9770, 
1-0123). 

When examining the above transformations it 
becomes clear that to characterize low-order inhomo- 
geneous transformations successfully requires that 
data (atoms) be distributed evenly through space for 
both reference and object structures. For most struc- 
tural comparisons one does not expect to see large 
homogeneous dilations or severe changes in cur- 
vature. This suggests that the tensor parameters them- 
selves can be directly constrained to have small values 
or values that will reflect only small changes in strain 
(variation of T) but allow for twists and bends. 
Unfortunately variations in R and T are not easily 
separable for inhomogeneous transformations and 
the construction of penalty functions that would not 
bias the comparisons would be difficult. 

What sort of deformations are characteristic of a 
cubic transform? Diamond (1976) has shown that 
quadratic transforms can bend and twist the structure 
in arcs of constant curvature; in the above example 
we see that this is not sufficient to iron out the ketone 
if the atomic hybridization is to remain reasonable. 
Fig. 4 shows two methods of viewing the displacement 
field (related to the strain field) that transforms chair 
cyclohexane into its planar conformation. The 
conformations were first superimposed using an 
orthogonal transformation to eliminate the pure rota- 
tion displacements. The subsequent cubic transfor- 
mation shows no quadratic contribution and only a 
minor amount of homogeneous strain. It can be seen 
that the cubic terms serve to unpucker the cyclo- 
hexane ring. In general a cubic transformation will 
accommodate structures where the variation in bend- 
ing and twisting (curvature) is skewed with respect 
to the centroid. 

The distortion tensors that were obtained from a 
particular structural comparison apply continuously 
over the region they were characterized from. 
Extrapolation outside the region of fit is possible but 
will most likely lead to calamitous results. As was 
alluded to in the Introduction, it would not be difficult 
to develop model distortion fields that could be used 
to perturb or modify structures. A simple prescription 
for applying a continuous twist would be to match a 
regular cubic grid of points to one that had each plane 
of points rotated relative to the adjacent plane by a 
constant angle about the twist axis. Next, apply the 
comparison procedure to the original and distorted 
grids to derive the transformation tensors. To apply 

the twisting distortion, one has only to centre and 
align a structure in the distortion field prior to the 
coordinate transformation. For instance, if the coor- 
dinates of an amino-acid residue were excised from 
a helical protein substructure and the pieces joined, 
subsequent optimization of this severe local distortion 
will probably tear adjacent residues away from the 
ideal helical form. However, this rending of the helical 
chain can be prevented by slightly twisting and 
stretching the chain fragments so that the new bond 
is more or less at the correct distance; thus, once 
joined, the entire substructure is only marginally 
distorted. 

In conclusion we note that the preferred method 
of interpretation or appreciation of such structut~al 
comparisons still relies heavily on qualitative vist]'al 
identification of similar regions, yet this is enhanced 
dramatically if the low-order global distortions are 
removed between the structures. Furthermore, the 
methods presented here are not intended to provide 
alternative standard measures of structural similarity 
but rather as a recourse to a better structural analysis. 
More sophisticated restraints such as selected proper 
and improper torsion-angle restrictions will help 

T 

(a) 

. . . .  

(b) 

Fig. 4. Stereo diagrams depicting the cubic deformation that forces 
chair cyclohexane into its planar conformation. (a) shows how 
the displacement vectors move the methylene groups alterna- 
tively up and down around the ring. (b) shows how a rectangular 
block of cubes distorts under the same cubic transformation. In 
both representations, the cubic tensor elements have been scaled 
down by 1/5 for clarity. 
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maintain atoms in the same plane where needed - 
indeed, a full molecular mechanics force field could 
be installed to monitor the total steric energy. 
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A P P E N D I X  

Equations (19) and (20) give the first and second 
derivatives of  Lt~ with respect to Ak~z" 

OA,,, - 2AKu d*s A,,~,Xtj~, Xu,  (19) 

OE LIj 

O A , , ,  O A,~ 

- d 5  Ld*,) mm~x,Jv~ A.~,Xu~, 
/~=2 

+ [ d*~ - du ]8,,m ] Xu ,  Xu, .  (20/ 

The derivatives of LHK with respect to Akt~ are real- 
ized by the applications of  the chain rule. Let U = 
cos O*tJrK=X/(YZ) 1/2, then the first and second 
derivatives of  LUK are given by (21)-(22) and deriva- 
tives with respect to U by (23)-(24). 

c3 L tjK 
O A ,,~ 

oE LIJK 

O Am, O A,~ 

_ 2AKuK (Our - O'jr) O--U-U (21) 
sin O*sr aA,,. 

2AKuK [ 
sin O*~r ( OuK -- O'jr) - -  

02 U 

O A,,~,A,~ 

I+(OxjK--O*jK) cot O*jK OU OU "] 
-¢ sin O*SK OA,,~, OA,,  J (22) 

OU 
O A,,~ 

_ ( y z ) _ l / 2  0X U ( 1 0 Y t l  OZ ) 
OA,,~ Y OA,,~ Z 0--~.~ (23) 

[ 
OA,,, OA,,, - ( YZ)-I /2  , 0Am, A,,, 

2 YOAm,  Z 0--~'  

2 0A, . ,  Y OA,,~ Z O 

U [  1 OY OY 
+ ~ ~ y20Am4, OA,,~ 

1 OZ OZ 

+ - ~  OAred, OA,~ 

1 02 Y 1 02Z \ 

- - Y  OAm~,A,~ Z OA~,A,,~/" ~ (24) 

The first and second derivatives of X and Y are given 
by (25)-(28) and the derivatives of Z as for Y with 
/ J  replaced by JK. 

) (: ) 
(25t 

02X 
= (X,Jv, X~K~ + XJKv, X,.,~)8,,,, (26) 

aA,, V, aA,,~ 

OY 
O~,-,~o- 2(~--2 a,,~,Xu~,)X,~q, (27, 

02 y 
-- 2 XIJt~,](Ij~ot~mn. (28) 

O Ar,,v, A,,~ 
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